EE 330 Lecture 41

Digital Circuits

Capacitive Loading Effects on Propagation Delay Overdrive Factors Propagation Delay With Multiple Levels of Logic

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27

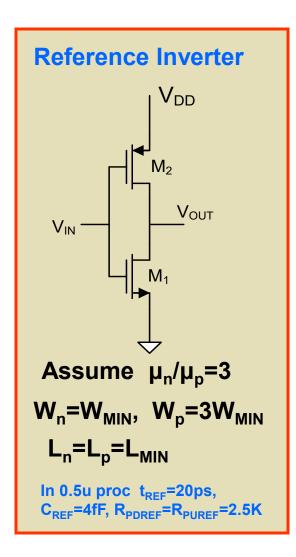
Exam 2 Friday October 25

Exam 3 Friday Nov 22

Final Exam Monday Dec 16 12:00 - 2:00

PM

The Reference Inverter



$$\begin{split} R_{\text{PDREF}} &= R_{\text{PUREF}} \\ C_{\text{REF}} &= C_{\text{IN}} = 4C_{\text{OX}}W_{\text{MIN}}L_{\text{MIN}} \\ R_{\text{PDREF}} &= \frac{L_{\text{MIN}}}{\mu_{\text{n}}C_{\text{OX}}W_{\text{MIN}}\left(V_{\text{DD}} - V_{\text{Tn}}\right)} \stackrel{V_{Tn} = .2V_{DD}}{=} \frac{L_{\text{MIN}}}{\mu_{\text{n}}C_{\text{OX}}W_{\text{MIN}}\left(0.8V_{\text{DD}}\right)} \end{split}$$

$$t_{HLREF} = t_{LHREF} = R_{PDREF}C_{REF}$$

$$t_{REF} = t_{HLREF} + t_{LHREF} = 2R_{PDREF}C_{REF}$$

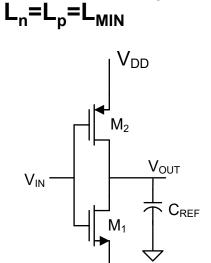
(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

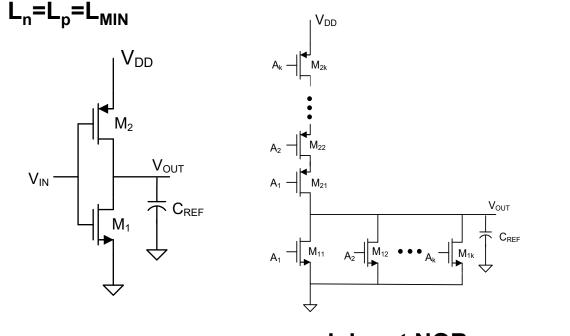
Device Sizing

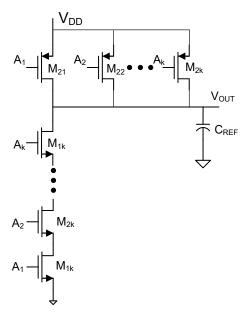
Equal Worse-Case Rise/Fall Device Sizing Strategy (and same drive as ref inverter)

-- (same as V_{TRIP}=V_{DD}/2 for worst case delay in typical process considered in example)

Assume $\mu_n/\mu_p=3$ How many degrees of freedom were available?







INV

 $W_n = W_{MIN}, W_p = 3W_{MIN}$

FI=1

k-input NOR

 $W_n = W_{MIN}, W_p = 3kW_{MIN}$

$$\mathbf{C}_{\mathsf{IN}} = \left(\frac{3\mathsf{k}+1}{4}\right) \mathbf{C}_{\mathsf{REF}}$$

$$\mathsf{FI} = \left(\frac{3\mathsf{k} + 1}{4}\right)$$

k-input NAND

 $W_n = kW_{MIN}, W_p = 3W_{MIN}$

$$\mathbf{C}_{\mathsf{IN}} = \left(\frac{3+\mathsf{k}}{4}\right) \mathbf{C}_{\mathsf{REF}}$$

$$\mathsf{FI} = \left(\frac{3+\mathsf{k}}{4}\right)$$

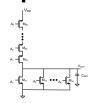
Device Sizing

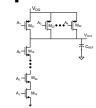
Multiple Input Gates:

2-input NOR

k-input NOR

k-input NAND





Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving C_{REF})

Wn=?

Wp=?

Fastest response $(t_{HL} \text{ or } t_{LH}) = ?$

Worst case response (t_{PROP} , usually of most interest)?

Input capacitance (FI) = ?

Minimum Sized (assume driving a load of C_{REF})

Wn=Wmin

Wp=Wmin

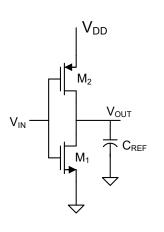
Fastest response $(t_{HL} \text{ or } t_{LH}) = ?$

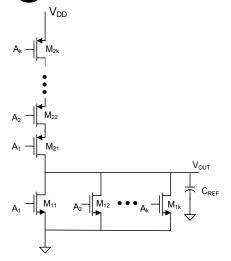
Slowest response $(t_{HL} \text{ or } t_{LH}) = ?$

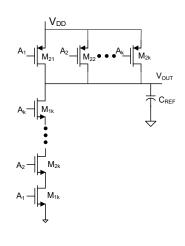
Worst case response (t_{PROP} , usually of most interest)?

Input capacitance (FI) = ?

Device Sizing - minimum size driving CREF







INV

$t_{PROP} = 0.5t_{REF} + \frac{3}{2}t_{REF}$ $t_{PROP} = 2t_{REF}$

k-input NOR

$$t_{PROP} = 0.5t_{REF} + \frac{3k}{2}t_{REF}$$
$$t_{PROP} = \left(\frac{3k+1}{2}\right)t_{REF}$$

k-input NAND

$$t_{PROP} = \frac{3}{2}t_{REF} + \frac{k}{2}t_{REF}$$
$$t_{PROP} = \frac{3+k}{2}t_{REF}$$

$$FI = \frac{C_{\text{REF}}}{2}$$

$$R_{\text{PU}} = 3R_{\text{PDREF}}$$

$$\bm{R}_{\text{PD}} = \bm{R}_{\text{PDREF}}$$

$$\frac{1+3k^{2}}{2k}t_{REF} \leq t_{PROP} \leq \frac{3k+1}{2}t_{REF}$$

$$FI = \frac{C_{REF}}{2}$$

$$\frac{R_{PDREF}}{k} \leq R_{PD} \leq R_{PDREF}$$

$$R_{PU} = 3kR_{PDREF}$$

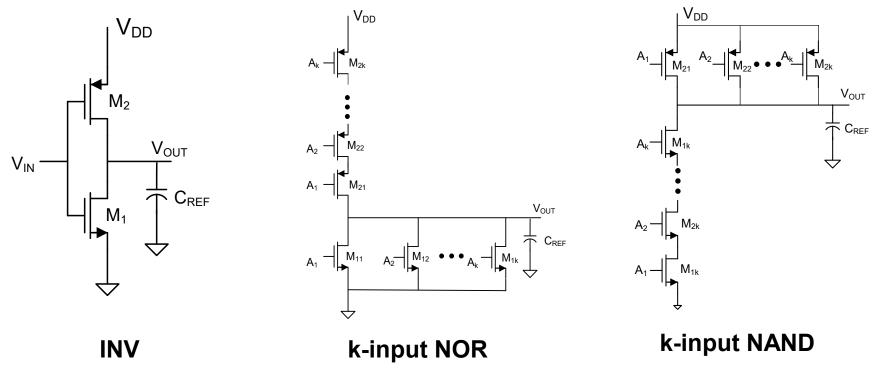
$$\frac{3+k^{2}}{2k}t_{REF} \leq t_{PROP} \leq \frac{3+k}{2}t_{REF}$$

$$\mathsf{FI} = \frac{\mathsf{C}_{\mathsf{REF}}}{2}$$

$$\frac{3\mathsf{R}_{\mathsf{PDREF}}}{\mathsf{k}} \leq \mathsf{R}_{\mathsf{PU}} \leq 3\mathsf{R}_{\mathsf{PDREF}}$$

$$\mathsf{R}_{\mathsf{PD}} = \mathsf{kR}_{\mathsf{PDREF}}$$

Device Sizing Summary



 C_{IN} for N_{AND} gates is considerably smaller than for NOR gates for equal worst-case rise and fall times

 $C_{\rm IN}$ for minimulm-sized structures is independent of number of inputs and much smaller than $C_{\rm IN}$ for the equal rise/fall time case

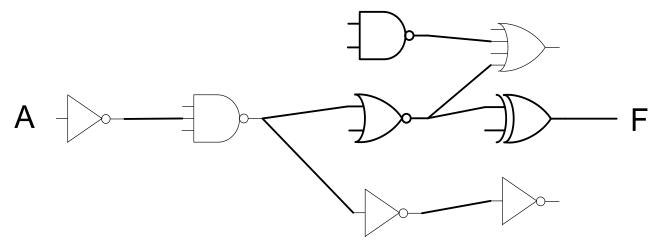
R_{PII} gets very large for minimum-sized NOR gate

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
 - Sizing of Gates
 - The Reference Inverter

- Propagation Delay with Multiple Levels of Logic
 - Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

done partial



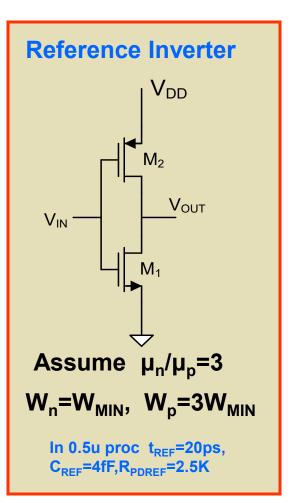
Assume all gates sized for equal worst-case rise/fall times

For n levels of logic between A and F

$$\mathbf{t}_{\mathsf{PROP}} = \sum_{k=1}^{\mathsf{n}} \mathbf{t}_{\mathsf{PROP}}(k)$$

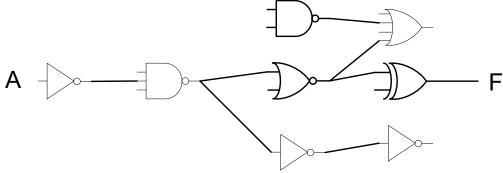
Remember: t_{prop} is defined to be the worst-case (slowest) propagation delay

Analysis strategy: Express delays in terms of those of reference inverter



$$\begin{split} & C_{\text{REF}} \!=\! C_{\text{IN}} \!=\! 4 C_{\text{OX}} W_{\text{MIN}} L_{\text{MIN}} \\ & FI \!=\! 1 \\ & R_{\text{PDREF}} = \! \frac{L_{\text{MIN}}}{\mu_{\text{n}} C_{\text{OX}} W_{\text{MIN}} (V_{\text{DD}} \!-\! V_{\text{Tn}})} \stackrel{V_{\mathcal{T}_{\text{n}}} = 2 V_{\text{DD}}}{=} \frac{L_{\text{MIN}}}{\mu_{\text{n}} C_{\text{OX}} W_{\text{MIN}} (0.8 V_{\text{DD}})} \\ & t_{\text{REF}} \!=\! t_{\text{HLREF}} \!+\! t_{\text{LHREF}} \!=\! 2 R_{\text{PDREF}} C_{\text{REF}} \end{split}$$

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)



Assume:

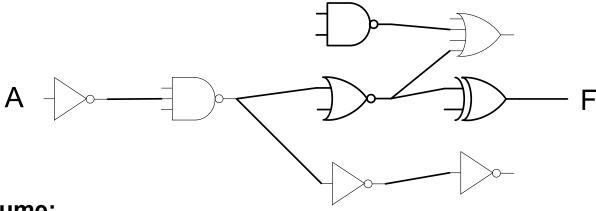
- all gates sized for equal worst-case rise/fall times
- all gates sized to have worst-case rise and fall times equal to that of ref inverter when driving C_{RFF}

$$A \xrightarrow{H} A \xrightarrow{H} FI$$

$$\downarrow FI$$

Observe:

 With these assumptions, propagation delay of these gates will be scaled by the ratio of the total load capacitance on each gate to C_{REF}



Assume:

- all gates sized for equal worst-case rise/fall times
- all gates sized to have worst case rise and fall times equal to that of ref inverter when driving C_{RFF}

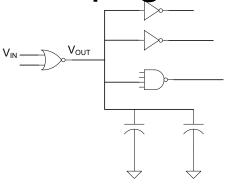
Observe:

 Propagation delay of these gates will be scaled by the ratio of the total load capacitance on each gate to C_{REF}

What loading will a gate see?

- Input capacitance to other gates
- Any load capacitors
- Parasitic interconnect capacitnaces

Propagation Delay with Stage Loading



$$t_{REF} = 2R_{PDref}C_{REF}$$

$$C_{REF} = 4C_{OX}W_{MIN}L_{MIN}$$

FI of a capacitor

$$FI_C = \frac{C}{C_{REF}}$$

FI of a gate (input k)

$$FI_{G} = \frac{C_{INK}}{C_{RFF}}$$

FI of an interconnect

$$FI_{l} = \frac{C_{INI}}{C_{REF}}$$

Overall FI

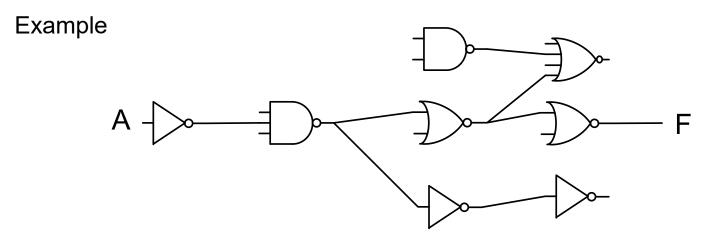
$$FI = \frac{\sum_{Gates} C_{INGi} + \sum_{Capacitances} C_{INCi} + \sum_{Interconnects} C_{INIi}}{C_{PEE}}$$

FI can be expressed either in units of capacitance or normalized to $\mathbf{C}_{\mathsf{REF}}$

Most commonly FI is normalized but must determine from context

If gates sized to have same drive as ref inverter

 $t_{prop-k} = t_{REF} \bullet FI_{LOAD-k}$



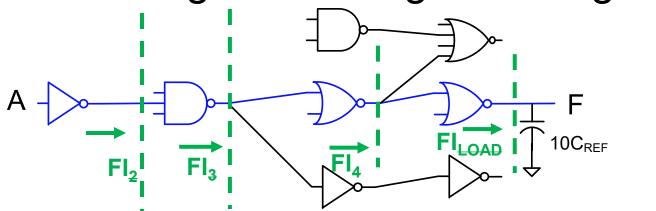
Assume all gates sized for equal worst-case rise/fall times Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of $10C_{REF}$ on F output

Determine propagation delay from A to F
$$t_{PROP} = \sum_{k=1}^{4} t_{PROP-k}$$

$$t_{prop-k} = t_{REF} \bullet FI_{LOAD-k}$$

$$t_{PROP} = t_{REF} \sum_{k=1}^{4} FI_{LOAD-k}$$

$$t_{PROP} = t_{REF} \sum_{k=1}^{4} FI_{k+1}$$



FI NOR =
$$\left(\frac{3k+1}{4}\right)$$
C_{REF}

FI NAND =
$$\left(\frac{3+k}{4}\right)$$
 C_{REF}

Assume all gates sized for equal worst-case rise/fall times

Assume all gate drives are the same as that of reference inverter

Neglect interconnect capacitance, assume load of 10C_{REF} on F output

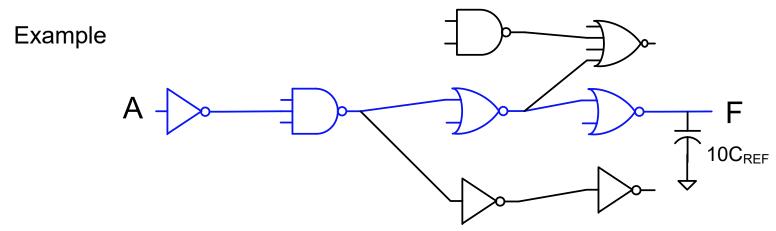
Determine propagation delay from A to F

$$t_{PROP} = t_{REF} \sum_{k=1}^{\infty} Fl_{k+1}$$

What loading will a gate see?

Derivation:

$$FI_{2} = \frac{6}{4}C_{REF} \qquad FI_{3} = C_{REF} + \frac{7}{4}C_{REF} \qquad FI_{4} = \frac{7}{4}C_{REF} + \frac{13}{4}C_{REF} \qquad FI_{LOAD} = FI_{"5"} = 10C_{REF}$$



Assume all gates sized for equal worst-case rise/fall times
Assume all gate drives are the same as that of reference inverter
Neglect interconnect capacitance, assume load of 10C_{REF} on F output

Determine propagation delay from A to F

$$t_{PROP} = t_{REF} \sum_{k=1}^{4} FI_{k+1}$$

DERIVATIONS

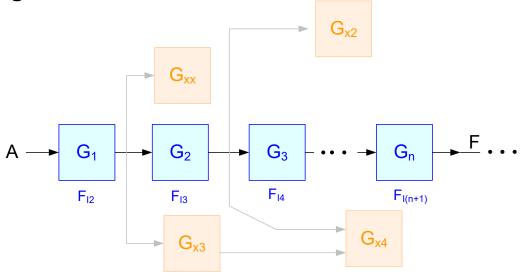
$$FI_{2} = \frac{6}{4}C_{REF} \qquad FI_{3} = C_{REF} + \frac{7}{4}C_{REF} \qquad FI_{4} = \frac{7}{4}C_{REF} + \frac{13}{4}C_{REF} \qquad FI_{5} = 10C_{REF}$$

$$t_{PROP1} = \frac{6}{4}t_{REF} \qquad t_{PROP2} = \left(1 + \frac{7}{4}\right)t_{REF} \qquad t_{PROP3} = \left(\frac{7}{4} + \frac{13}{4}\right)t_{REF} \qquad t_{PROP4} = 10t_{REF}$$

$$t_{PROP} = \sum_{k=1}^{n} t_{PROP-k} = t_{REF} \sum_{k=1}^{n} FI_{k+1} = t_{REF} \left(\frac{6}{4} + \frac{11}{4} + \frac{20}{4} + 10 \right) = t_{REF} \left(19.25 \right)$$

Propagation Delay Through Multiple Stages of Logic with Stage Loading

(assuming gate drives are all same as that of reference inverter)



Summary:

Identify the gate path from A to F

Propagation delay from A to F:

$$t_{PROP} = t_{REF} \sum_{k=1}^{11} F I_{k+1}$$

This approach is analytically manageable, provides modest accuracy and is "faithful"

Digital Circuit Design

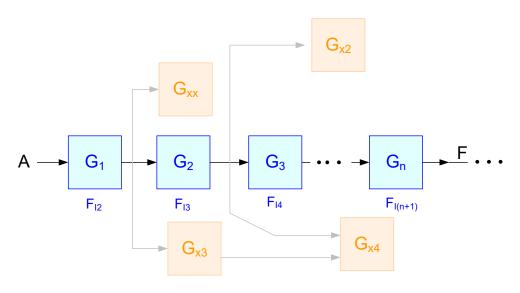
- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
- Sizing of Gates
 - The Reference Inverter

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

done

partial

What if the propagation delay is too long (or too short)?



Propagation delay from A to F:

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$

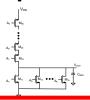
$$t_{PROPk} = t_{REF} FI_{(k+1)}$$

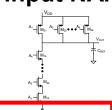
Recall:

Device Sizing

Multiple Input Gates:

2-input NOR





Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving C_{REF})

$$W_n = ?$$

$$W_p = ?$$

Fastest response $(t_{HI} \text{ or } t_{IH}) = ?$

Worst case response (t_{PROP} , usually of most interest)?

Input capacitance (FI) = ?

Minimum Sized (assume driving a load of C_{REF})

$$W_n = W_{min}$$

$$W_p = W_{min}$$

Fastest response $(t_{HI} \text{ or } t_{IH}) = ?$

Slowest response $(t_{HL} \text{ or } t_{LH}) = ?$

Worst case response (t_{PROP} , usually of most interest)?

Input capacitance (FI) = ?

Recall:

Device Sizing

Equal Worst Case Rise/Fall | (and equal to that of ref inverter when driving C_{REF})

 V_{DD}

(n-channel devices sized same, p-channel devices sized the same) Assume L_n=L_p=Lmin and driving a load of C_{REF}

$$W_n=?$$

$$W_p = ?$$

Input capacitance = ?

t_{PROP}=? (worst case)

$W_n = W_{MIN}$

$$W_p = 6W_{MIN}$$

DERIVATIONS

One degree of freedom was used to satisfy the constraint indicated

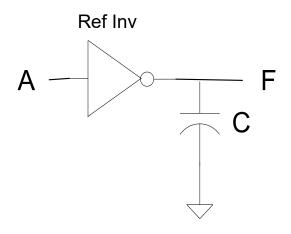
Other degree of freedom was used to achieve equal rise and fall times

$$C_{INA} = C_{INB} = C_{OX} W_{MIN} L_{MIN} + 6C_{OX} W_{MIN} L_{MIN} = 7C_{OX} W_{MIN} L_{MIN} = \left(\frac{7}{4}\right) 4C_{OX} W_{MIN} L_{MIN} = \left(\frac{7}{4}\right) C_{REF}$$

$$FI = \left(\frac{7}{4}\right) C_{REF}$$
 or $FI = \frac{7}{4}$

$$t_{PROP} = t_{REF}$$
 (worst case)

Overdrive Factors



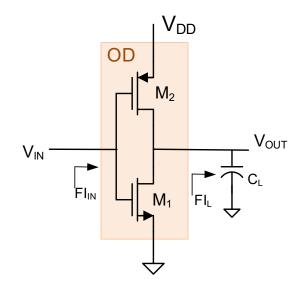
Example: Determine t_{prop} in 0.5u process if C=10pF In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} = \mathbf{t}_{\mathsf{REF}} \bullet 2500$$

$$t_{PROP} = 20ps \cdot 2500 = 50nsec$$

Note this is generally considered to be unacceptably long!

Overdrive Factors



Scaling widths of ALL devices by constant (W_{scaled} =WxOD) will change "drive" capability relative to that of the reference inverter but not change relative value of t_{HI} and t_{LH}

relative value of
$$t_{HL}$$
 and t_{LH}

$$R_{PDD} = \frac{L_1}{\mu_n C_{OX} W_1 (V_{DD} - V_{Tn})} = \frac{R_{PD}}{OD}$$

$$R_{PDOD} = \frac{L_1}{\mu_n C_{OX} [OD \bullet W_1] (V_{DD} - V_{Tn})} = \frac{R_{PD}}{OD}$$

$$R_{PUOD} = \frac{L_2}{\mu_p C_{OX} [OD \bullet W_2] (V_{DD} + V_{Tp})} = \frac{R_{PU}}{OD}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI}_{\mathsf{L}} \bullet \frac{1}{\mathsf{OD}}$$

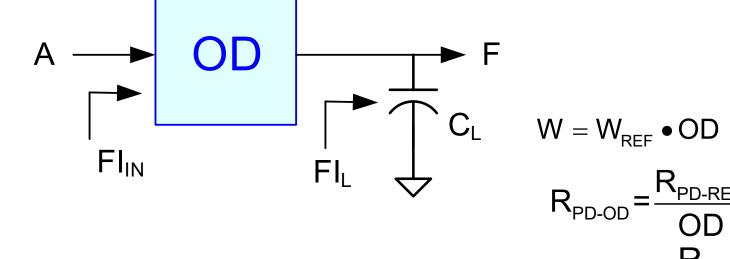
Scaling widths of ALL devices by constant will change Fl_{IN} to gate by OD

$$C_{IN} = C_{OX} (W_1 L_1 + W_2 L_2)$$

$$C_{INOD} = C_{OX} ([O D \bullet W_1] L_1 + [O D \bullet W_2] L_2) = O D \bullet C_{IN}$$

Overdrive Factors - Summary

(For equal worst-case rise/fall gates)

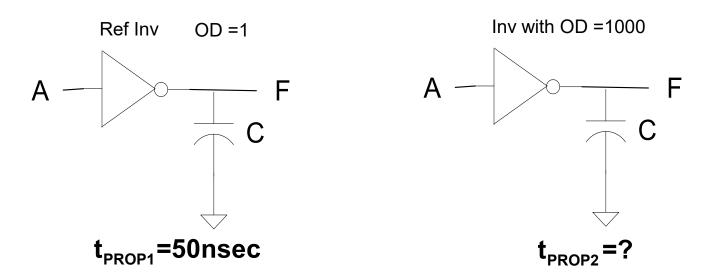


Still equal worst-case rise/fall

$$t_{PROP} = t_{REF} \cdot FI_{L} \cdot \frac{1}{OD}$$

$$FI_{IN} = OD \cdot C_{REF}$$

Overdrive Factors



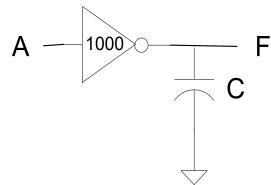
Example: Determine t_{prop} in 0.5u process if C=10pF and OD=1000

$$\mathbf{t_{PROP1}} = \mathbf{t_{REF}} \bullet \mathbf{FI_{LOAD}} \bullet \frac{1}{\mathbf{OD}} = \mathbf{t_{REF}} \bullet \frac{10pF}{4fF} = \mathbf{t_{REF}} \bullet 2500$$

$$\mathbf{t_{PROP2}} = \mathbf{t_{REF}} \bullet \mathbf{FI_{LOAD}} \bullet \frac{1}{\mathbf{OD}} = \mathbf{t_{REF}} \bullet \frac{10pF}{4fF} \bullet \frac{1}{\mathbf{1000}} = \mathbf{t_{REF}} \bullet 2.5$$

Note sizing the inverter with the OD improved delay by a factor of 1000!

Overdrive Factors



- By definition, the factor by which the W/L of all devices are scaled above those of the reference inverter is termed the overdrive factor, OD
- Scaling widths by overdrive factor DECREASES resistance by same factor
- Scaling <u>all</u> widths by a constant does not compromise the symmetry between the rise and fall times (i.e. t_{HL}=t_{LH})
- Judicious use of overdrive can dramatically improve the speed of digital circuits
- Large overdrive factors are often used
- Scaling widths by overdrive factor INCREASES input capacitance by same factor - So is there any net gain in speed?

Digital Circuit Design

Hierarchical Design

Basic Logic Gates

Properties of Logic Families

Characterization of CMOS Inverter

Static CMOS Logic Gates

Ratio Logic

Propagation Delay

Simple analytical models

- FI/OD
- Logical Effort
- Elmore Delay

Sizing of Gates

The Reference Inverter

Propagation Delay with Multiple Levels of Logic

Optimal driving of Large Capacitive Loads

Power Dissipation in Logic Circuits

- Other Logic Styles
- Array Logic
- Ring Oscillators

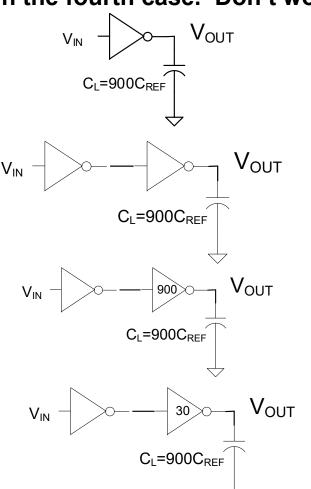
done

partial

Propagation Delay with Over-drive Capability

Example

Compare the propagation delays. Assume the OD is 900 in the third case and 30 in the fourth case. Don't worry about the extra inversion at this time.



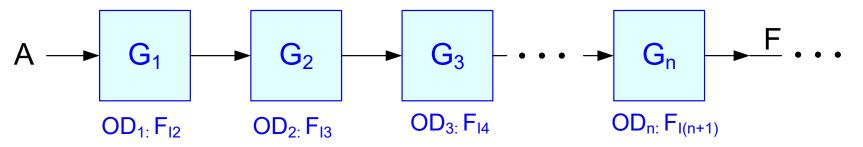
$$t_{PROP} = 900t_{REF}$$

$$t_{\text{PROP}} \text{=} \; t_{\text{REF}} + 900t_{\text{REF}} = 901t_{\text{REF}}$$

$$\boldsymbol{t_{\mathsf{PROP}}}\text{=}\boldsymbol{900}\boldsymbol{t_{\mathsf{REF}}}+\boldsymbol{t_{\mathsf{REF}}}=\boldsymbol{901}\boldsymbol{t_{\mathsf{REF}}}$$

$$t_{\text{PROP}} \hspace{-0.5em}=\hspace{-0.5em} 30t_{\text{REF}} + 30t_{\text{REF}} = 60t_{\text{REF}}$$

- Dramatic reduction in t_{PROP} is possible (input is driving same in all 3 cases)
- Will later determine what optimal number of stages and sizing is



 F_{lk} denotes the total loading on stage k which is the sum of the F_l of all loading on stage k

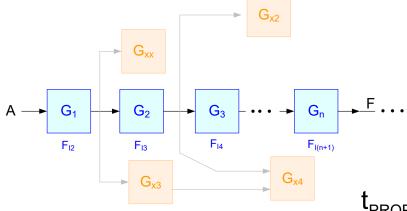
Summary: Propagation delay from A to F:

$$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \sum_{k=1}^{n} \frac{\mathbf{F}_{l(k+1)}}{\mathbf{OD}_{k}}$$

Will consider an example with the five cases

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

Will develop the analysis methods as needed



- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{11} FI_{(k+1)}$$

$$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \sum_{k=1}^{n} \frac{\mathbf{F}_{I(k+1)}}{\mathbf{OD}_{k}}$$

$$t_{PROP} = ?$$

$$t_{PROP} = ?$$

$$t_{PROP} = ?$$

Driving Notation

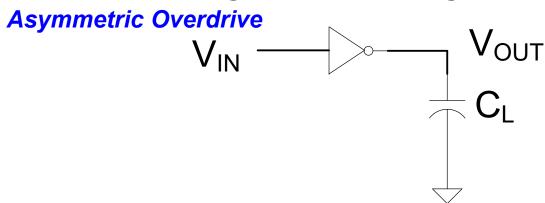
• Equal rise/fall (no overdrive)

Equal rise/fall with overdrive

Minimum Sized

Asymmetric Overdrive

Notation will be used only if it is not clear from the context what sizing is being used



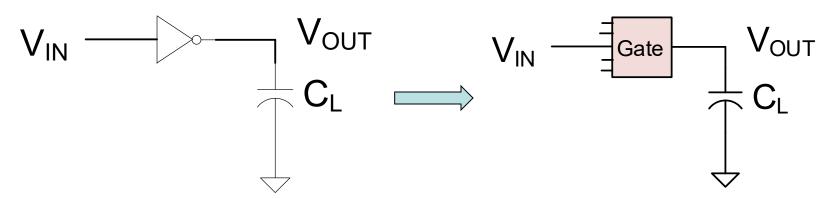
Recall:

Define the Asymmetric Overdrive Factors of the stage to be the factors by which PU and PD resistors are scaled relative to those of the reference inverter.

$$R_{PDEFF} = \frac{R_{PDREF}}{OD_{HL}}$$

$$R_{PUEFF} = \frac{R_{PUREF}}{OD_{LH}}$$

Asymmetric Overdrive



Recall:

If inverter is not equal rise/fall

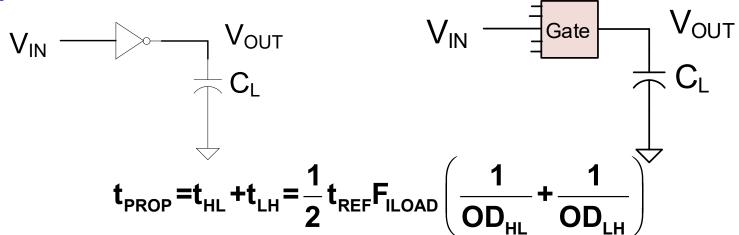
$$t_{HL} = \frac{R_{PDREF}}{OD_{HL}} C_{L} = \frac{1}{2} t_{REF} \frac{F_{IL}}{OD_{HL}}$$

$$t_{LH} = \frac{R_{PUREF}}{OD_{LH}} C_{L} = \frac{1}{2} t_{REF} \frac{F_{IL}}{OD_{LH}}$$

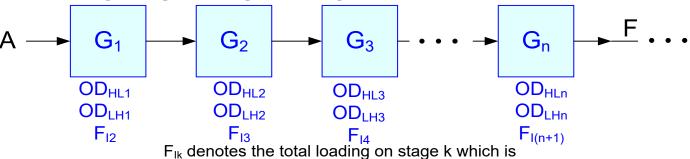
$$t_{PROP} = t_{HL} + t_{LH} = \frac{1}{2} t_{REF} F_{IL} \left(\frac{1}{OD_{HL}} + \frac{1}{OD_{LH}} \right)$$

 $t_{PROP} = t_{LH} + t_{HL} = t_{REF} \frac{F_{IL}}{OD}$

Asymmetric Overdrive

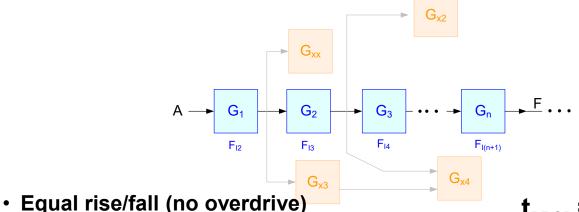


When propagating through n stages:



$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{\mathsf{k=1}}^{\mathsf{n}} \mathbf{F}_{\mathsf{l}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{\mathsf{1}}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

the sum of the F_I of all loading on stage k



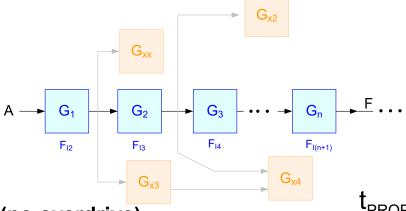
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = ?$$

$$t_{PROP} = ?$$

$$t_{PROP} = ?$$

$$t_{PROP} = ?$$



Equal rise/fall (no overdrive)

- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{11} FI_{(k+1)}$$

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_k}$$

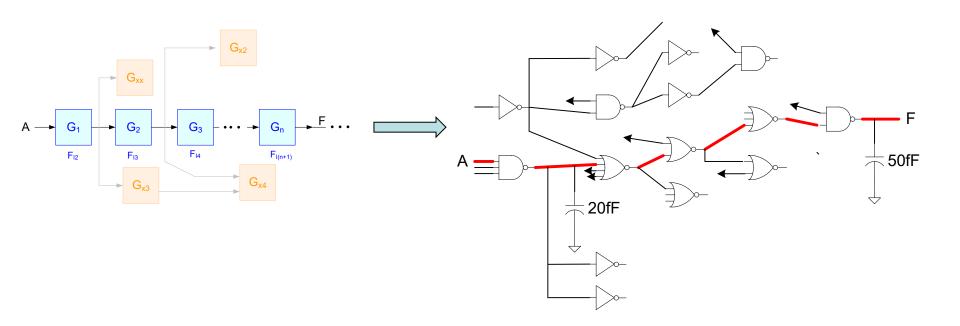
$$t_{PROP} = ?$$

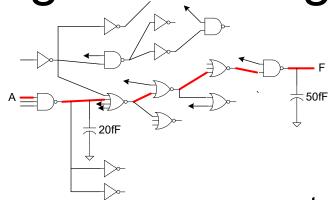
$$\boldsymbol{t_{\text{PROP}}} = \boldsymbol{t_{\text{REF}}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \boldsymbol{F_{\text{I(k+1)}}} \left(\frac{1}{\boldsymbol{OD_{\text{HLk}}}} + \frac{\boldsymbol{1}}{\boldsymbol{OD_{\text{LHk}}}} \right) \right)$$

$$t_{PROP} = ?$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading and Overdrives

Will now consider A to F propagation for this circuit as an <u>example</u> with different overdrives





- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$

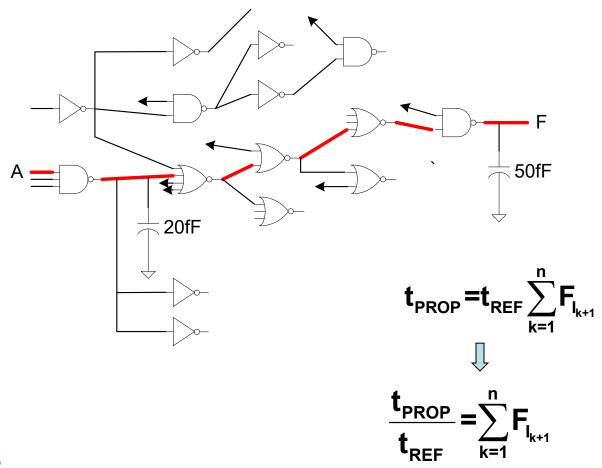
$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD}$$

$$t_{PROP} = ?$$

$$\boldsymbol{t_{\text{PROP}}} = \boldsymbol{t_{\text{REF}}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \boldsymbol{F_{\text{I(k+1)}}} \left(\frac{1}{\boldsymbol{OD_{\text{HLk}}}} + \frac{\boldsymbol{1}}{\boldsymbol{OD_{\text{LHk}}}} \right) \right)$$

$$t_{PROP} = ?$$

Equal rise-fall gates, no overdrive



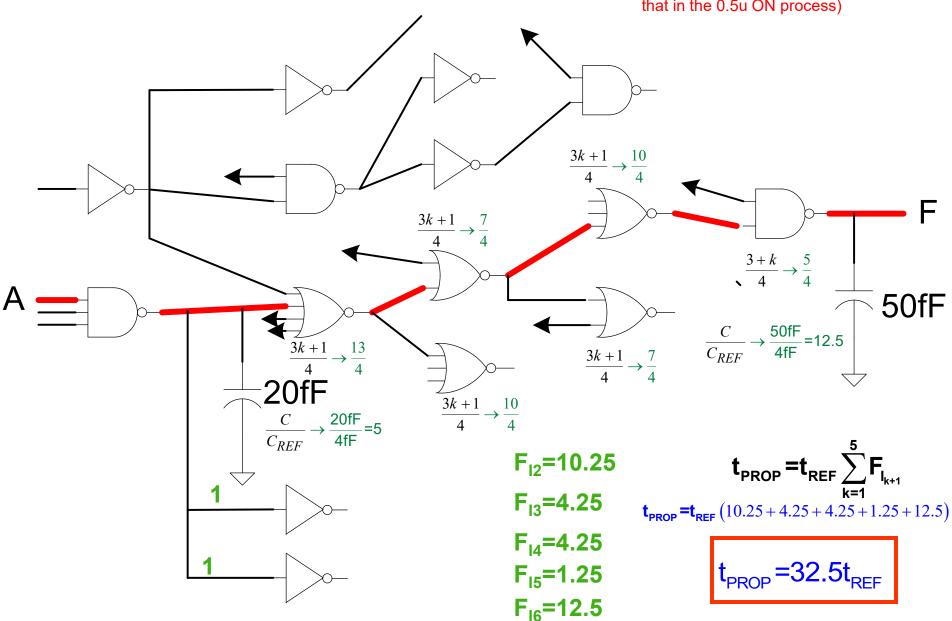
Equal rise-fall gates, no overdrive

	Equal Rise/Fall
$C_{\text{IN}}/C_{\text{REF}}$	
Inverter	1
NOR	3k+1 4
NAND	3+k 4
Overdrive	
Inverter HL	1
LH	1
NOR HL	1
LH	1
NAND HL	1
LH	1
t _{PROP} /t _{REF}	$\sum_{k=1}^n \mathbf{F}_{l(k+1)}$

Equal rise-fall gates, no overdrive

In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

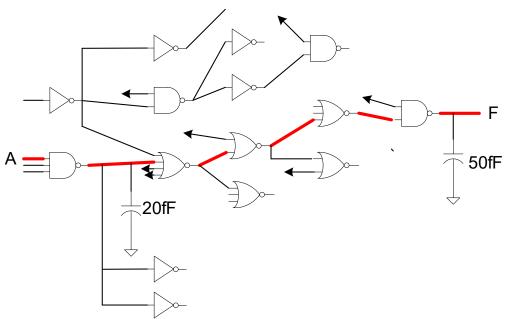
(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)



Equal rise-fall gates, no overdrive

In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)



$$t_{PROP} = 32.5t_{REF}$$

How does this propagation delay compare to that required for a propagation of a signal through 5-levels of logic with only reference inverters (load is a ref inverter instead of 50fF as well)?

$$A \longrightarrow t_{PROP} = 5t_{REF}$$

Loading can have a dramatic effect on propagation delay

Stay Safe and Stay Healthy!

End of Lecture 41